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with serine in the loop region could change the cofactor 
dependence from NAD(H) to NADP(H).
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Introduction

The use of microbes for the production of chiral pharma-
ceutical intermediates and several other plant-based natu-
ral products is a promising alternative to the traditional 
chemical synthesis routes. Such compounds are usually 
complex molecules with multiple stereocenters and chi-
ral functional groups, requiring extensive amounts of 
NADP(H) as a specific cofactor for their biosynthesis via 
highly specific oxidoreductase family of enzymes, such as 
the cytochrome P450s [6, 48]. Therefore, it is a prerequisite 
for the microbial cell factories to sufficiently regenerate the 
required NADPH to achieve high yields and large titers of 
such complex molecules. However, it is well known that 
most of the commonly used industrial microbes, such as 
Escherichia coli and Bacillus subtilis naturally possess low 
NADP(H) turnover rates when compared to NAD(H) [14]. 
This is mainly due to the type of reactions they are involved 
in cellular metabolism: NAD(H) is generally associated 
with the high flux pathways, i.e., glycolysis, fermentation, 
and oxidative phosphorylation whereas NADP(H) is linked 
with moderately low flux routes, such as pentose phosphate 
pathway (PPP), transdehydrogenase enzymes, and amino 
acid and nucleotide biosynthetic pathways. As such, it is 
essential for the microbial expression hosts to possess high 
NADP(H) turnover in the metabolic backbone for the effi-
cient synthesis of these natural products.

Abstract  Optimizing the overall NADPH turnover is one 
of the key challenges in various value-added biochemi-
cal syntheses. In this work, we first analyzed the NADPH 
regeneration potentials of common cell factories, includ-
ing Escherichia coli, Saccharomyces cerevisiae, Bacillus 
subtilis, and Pichia pastoris across multiple environmental 
conditions and determined E. coli and glycerol as the best 
microbial chassis and most suitable carbon source, respec-
tively. In addition, we identified optimal cofactor specific-
ity engineering (CSE) enzyme targets, whose cofactors 
when switched from NAD(H) to NADP(H) improve the 
overall NADP(H) turnover. Among several enzyme tar-
gets, glyceraldehyde-3-phosphate dehydrogenase was rec-
ognized as a global candidate since its CSE improved the 
NADP(H) regeneration under most of the conditions exam-
ined. Finally, by analyzing the protein structures of all CSE 
enzyme targets via homology modeling, we established 
that the replacement of conserved glutamate or aspartate 
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Recognizing the importance of amplifying the overall 
NADPH bioavailability, several techniques has been pro-
posed for the same [25]. In one of the earlier and simpler 
work, San et al. used different carbon substrates to utilize 
diverse metabolic pathways, and thus manipulating intra-
cellular cofactor levels [42]. Later, specific genetic engi-
neering strategies were proposed to forcefully re-direct 
the metabolic fluxes via desired pathways to improve the 
required cofactor regeneration. For example, overexpres-
sion of glucose-6-phosphate dehydrogenase (zwf) and/or 
gluconate-P dehydrogenase (gnd) [24, 30, 44] and deletion 
of phosphoglucose isomerase (pgi) [1, 5] and phosphofruc-
tokinase (pfk) in Escherichia coli increased the carbon flux 
through PPP, and thus augmented the overall NADP(H) 
turnover. Other strategies, such as overexpression of NAD 
kinase [29] and the endogenous nucleotide transhydroge-
nase (PntA/UdhA) [2, 22] enzymes, are also proposed to 
improve the intracellular NADP(H) levels at the expense of 
NAD(H). As an alternative, engineering the cofactor speci-
ficity of a particular enzyme from NAD(H) to NADP(H) 
was also shown to increase the NADP(H) production rates 
at the expense of NAD(H) [33].

In silico model-driven approaches have been increas-
ingly employed to guide metabolic engineering in the 
past decade [23, 26, 34]. Notably, most of these studies 
utilized the simple and extensible steady-state modeling 
framework, constraint-based modeling (CBM), which 
can simulate the cellular phenotype in terms of metabolic 
fluxes with just the information of reaction stoichiometry 
and mass-balance from the underlying metabolic mod-
els [3, 28]. As a result, genome-scale metabolic models 
(GEMs) have now been reconstructed for more than 100 
organisms across all domains of life [36]. Furthermore, 
the availability of various conveniently accessible CBM 
software applications along with the GEMs has greatly 
accelerated the in silico phenotype prediction and rational 
design of cellular systems [21]. In cofactor regards, Chin 
et  al. first utilized the CBM approach to investigate the 
possible metabolic sources and their contributions toward 
overall NADP(H) synthesis in various xylitol overproduc-
ing mutants of E. coli [7]. Later, Ahn et al. analyzed the 
differences in the NADP(H) turnover rates between the 
wild-type E. coli and its pgi-mutant to account for the 
enhanced shikimate production [1]. Further, Ghosh et al. 
explored the effect of altering the cofactor specificity of 
various enzymes among the non-native xylose catabolic 
pathways of Saccharomyces cerevisiae upon its cellu-
lar growth and ethanol production [15]. Following such 
initial successful applications of CBM to analyze redox 
balancing, novel in silico methods were also proposed to 
improve the regeneration of desired cofactor. Cipher for 
Evolutionary Design was the first algorithm proposed in 
this manner to unravel valid gene deletion targets which 

can improve the intracellular NADP(H) levels [5]. Two 
other in silico methods, cofactor modification analysis 
(CMA) [11, 20] and OptSwap [18, 19], were also pro-
posed to identify relevant cofactor specificity engineer-
ing (CSE) targets which can augment the yield of several 
native and non-native products in E. coli and S. cerevisiae 
by improving the overall redox balance. Although these 
model-driven studies provided valuable insights regarding 
intracellular cofactor regeneration, still a comprehensive 
in silico analysis of how metabolic pathway organization 
can influence redox balance in different microbes is not 
available yet. Accessibility to such information will help 
experimentalists to rationally select the preferred micro-
bial chassis and design the culture media appropriately for 
the NADPH–dependent product of interest.

In this work, we first utilize the previously proposed metab-
olite-centric approach, known as flux-sum analysis [9], to 
quantify the overall NADPH turnover rates in four of the com-
monly used industrial microbial hosts, E. coli, S. cerevisiae, 
B. subtilis, and Pichia pastoris, under aerobic and anaerobic 
conditions using the corresponding constraint-based GEMs. 
Subsequently, we employ the CMA to identify the optimal 
enzyme targets in each of the organism whose cofactor engi-
neering can further improve the overall NADP(H) turnover. 
Finally, we identified the cofactor binding sites in these target 
enzymes by analyzing protein sequence and structural data, 
and propose mutation strategies that may potentially switch 
their cofactor specificity from NADH to NADPH.

Methods

Constraints‑based flux analysis

In this study, we utilized constraints-based flux analysis, 
also known as flux balance analysis, for computing the 
maximal cellular growth under varying environmental con-
ditions [38]. The biomass reaction was maximized to quan-
tify the internal flux distribution as described elsewhere 
[13]. Mathematically, the constraints-based flux analysis 
problem for biomass flux maximization subjected to stoi-
chiometric and capacity constraints can be represented as

where Sij is the stoichiometric matrix, vj is the flux through 
reaction j, and, vj

min and vj
max are the possible lower and 

upper limits of flux vj, respectively.

(1)

max vbiomass

s.t.

∑

j

Sijvj = 0 ∀ metabolite i

vmin

j ≤ vj ≤ vmax

j ∀ reaction j
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Flux variability analysis

Since constraints-based flux analysis is an optimization-
based technique, it is often possible to have multiple flux 
values for the same objective. Therefore, we performed 
the flux variability analysis (FVA) [32] to identify all 
active fluxes and their possible ranges during maximal cell 
growth. The mathematical formulation of FVA problem can 
be represented using the same constraints of constraint-
based flux analysis as follows:

where Zobj denotes the value of objective calculated from 
problem (1) and n is the total number of fluxes. The upper 
range of fluxes is identified by maximizing the objective 
whereas the lower range is obtained by minimizing the 
same.

Flux‑sum analysis

Since the constraint-based flux analysis simply indicates 
the rates of consumption/generation of cofactors, we uti-
lized the previously developed concept of “flux-sum” (φi) 
to quantify the overall NADP(H) and NAD(H) turnover 
rates in the metabolic network [9, 17]. Under the steady-
state assumption, the generation and consumption of any 
metabolite will be equal. Therefore, the flux-sum of metab-
olite i can be formulated as

where the actual turnover rate of metabolite i is the half of 
absolute sum of consumption and generation rates. In this 
study, we compute both the basal cofactor flux-sum, i.e., 
the possible turnover rates of NADH and NADPH dur-
ing maximal cellular growth, and the flux-sum maxima of 
NADPH, i.e., the maximum achievable flux-sum from the 
metabolic network.

Basal flux‑sum

The basal flux-sum of cofactors, NADPH and NADH, was 
calculated from the “wild-type” flux distributions which are 
determined by solving the constraint-based flux analysis and 
FVA problems. Briefly, the procedure to compute the range of 
cofactor basal flux-sums is as follows. First, the problem (1) 

(2)

max/min vj

s.t.

∑

j

Sijvj = 0

∑

j

cjvj = Zobj

vmin
j ≤ vj ≤ vmax

j for j = 1, . . . , n

(3)
φi = 0.5

∑

j

∣∣Sijvj
∣∣,

is solved to compute the maximal cell growth. Subsequently, 
problem (2) is solved to evaluate the maximal and minimal val-
ues of each flux in the model while the cells achieve the maxi-
mal cellular growth which is calculated from (1). Finally, the 
lower and upper range of cofactor flux-sums are calculated by 
substituting the solution obtained from problem (2) onto Eq. 3.

Flux‑sum maxima

As mentioned earlier, the flux-sum of a NADPH simply 
provides its turnover rates in the metabolic network while 
the cell evolves toward a particular objective, typically 
growth maximization [9]. Besides basal flux-sum, another 
important metric to assess the NADPH regeneration abil-
ity of each microbe is the flux-sum maxima, i.e., maximum 
possible NADPH turnover rates. It should be noted that 
although cells may never achieve this level of NADPH dur-
ing cell culture, its evaluation will provide us more insights 
about the flexibility of the metabolic network to synthesize 
NADPH. It was calculated using the previously proposed 
mixed-integer optimization (MIP) problem [9] which can 
be mathematically represented as follows:

The flux-sum term is nonlinear due to the modulus 
operator (Eq.  3). Therefore, its direct imposition into any 
optimization formulation will result in a nonlinear problem. 
In order to avoid such instance, we introduced additional 
constraints to represent it in linear integer form as proposed 
previously [9]. Accordingly, fij

+ and fij
−, are the two new pos-

itive variables which refer to the generation and consump-
tion components of metabolite i due to reaction j, respec-
tively. Iij

+ and Iij
− are the two binary variables which serve 

as switches to turn the generation and consumption com-
ponents on and off such that only one of the components is 
active, effected by the Iij

++ Iij
− = 1 constraint.

Cofactor modification analysis (CMA)

To identify the optimal CSE candidate which can improve 
the overall NADP(H) regeneration, we implemented CMA 

maxφ NADPH = 0.5

∑

j

(
f+
NADPH,j + f−

NADPH,j

)

s.t.

∑

j

Sijvj = 0 ∀ metabolite i

Sijvj = f+ij − f−ij

f+ij ≤ 1000 I+ij

f−ij ≤ 1000 I−ij

I+ij + I−ij = 1

vmin
j ≤ vj ≤ vmax

j ∀ reaction j

I+ij ∈ {0, 1}, I−ij ∈ {0, 1}, f+ij ≥ 0, f−ij ≥ 0.

.
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as described in our previous work [20], except, the outer 
objective as φNADPH instead of vproduct. Mathematically, the 
bi-level MINLP optimization problem specific to the CMA 
can be represented as follows:

where Sij
cMod is the cofactor modified stoichiometric matrix 

where the coefficients are same as Sij, except the reactions 
which involve either NAD(H) or NADP(H). These reac-
tions are swapped for cofactors in the Sij

cMod matrix such that 

SNAD(H),j = ScMod
NADP(H),j and SNADP(H),j = ScMod

NAD(H),j·vj
cMod is the 

flux through the cofactor-modified reaction and vmin
biomass is the 

minimum amount of biomass that needs to be produced. 
The binary variable yj

cMod ensures that the cofactor-associ-
ated reactions are allowed to carry flux either with its origi-
nal or swapped cofactor but not both. The number of cofac-
tor switches allowed in a particular simulation is controlled 
by the number k which is fixed at 1 for all simulations in 
this work. The bi-level MINLP problem was reformulated 
as a single-level MINLP problem using the primal dual 
transformation as described previously [20].

Genome‑scale models and in silico simulation settings

The iJR904 [40], iYO844 [37], iMM904 [35], and iPP668 
[10] metabolic models were used for analyzing the cofactor 
balancing in E. coli, B. subtilis, S. cerevisiae, and P. pastoris, 
respectively. First, the type III pathways [39] in all models 
were identified and one reaction in each of the loops was con-
strained to zero for eliminating the internal cycles during flux 
analysis computations. For all simulations, the carbon uptake 
rate was fixed at 100 C-mmol  g−1 DCW h−1. The oxygen 
uptake rate was set to either zero or 20 mmol g−1 DCW h−1, 
corresponding to anaerobic and aerobic conditions, respec-
tively. It should be noted that although some organisms, e.g., 
S. cerevisiae may have much lower oxygen uptake rates than 
20 mmol g−1 DCW h−1 [12], we used the same to make a 

maxφ NADPH = 0.5

�

j

��SNADPH,jvj
��

s.t.





max vbiomass

s.t.

�

j

�
Sijvj + ScMod

ij vcMod

j

�
= 0 ∀ metabolite i

vbiomass ≥ vmin
biomass�

1− ycMod

j

�
· vmin

j ≤ vj ≤
�
1− ycMod

j

�
· vmax

j

ycMod

j · vmin
j ≤ vcMod

j ≤ ycMod

j · vmax
j

ycMod

j = {0, 1} ∀ reaction j





�

j

ycMod

j ≤ k

,

fair comparison with others. The exchange fluxes of essential 
nutrients, such as NH3, phosphate, sulfite, H2O, Fe2+, Mg, 
and H+ were left unconstrained during simulations based on 
the default settings of corresponding GEM (see Table S1–
S4 in the Supporting Information for a list of unconstrained 
exchange reactions in each model). The minimum level 
of target biomass in CMA simulations was set at the value 
obtained during wild-type flux analysis simulations. Note 
that all simulations were performed in GAMS IDE software 
where the LP problems corresponding to constraint-based 
flux analysis and MIP problems related to flux-sum analysis 
were solved using CPLEX solver, and the MINLP problems 
specific to CMA were solved using LINDO solver.

Analysis of cofactor‑binding sites in target enzymes

The protein sequences for the target enzymes were retrieved 
from the Uniprot Database (http://www.uniprot.org/). For 
enzymes with experimentally determined structures, the 
structural information was retrieved from the Protein Data 
Bank (PDB) and their NADH-binding sites were readily 
identified in the structures. For enzymes without available 
structural data, 3D structural models were built by using 
their protein sequences as queries for homology modeling. 
HHpred [46] was used to identify structural templates from 
PDB based on profile–profile alignments in the algorithm. 
A structural model was then built by the MODELLER pro-
gram that is integrated into the HHpred server. The NADH 
cofactors were manually positioned in the models in a simi-
lar geometry and orientation observed in the binding sites 
of respective templates or their close homologs. Pairwise 
and multiple sequence alignments were performed by using 
Clustal Omega [45] with default parameters and observed 
for conserved sequences. The loop region in each enzyme 
that determines the cofactor preference was identified from 
the analysis of both sequence and structural information.

Results

NADP(H) turnover capacity of wild‑type strains

The intracellular cofactor pools are known to be greatly 
influenced by the carbon nutrient sources and the oxy-
genation conditions of the culture medium [41]. There-
fore, we first quantified the basal flux-sums of NADP(H) 
and NAD(H), i.e., the possible turnover rate ranges in wild 
type, in all the four organisms while growing on three of 
the most frequently used carbon sources for industrial fer-
mentation, i.e., glucose, xylose, and glycerol, under both 
aerobic and anaerobic conditions. Figure 1 shows the basal 
NAD(H) and NADP(H) flux-sums and the corresponding in 
silico growth rates of all the microbes examined.

http://www.uniprot.org/
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From Fig. 1a, it can be observed that the NADP(H) turn-
over is generally lower than that of NAD(H) in all organ-
isms under both aerobic and anaerobic conditions. Impor-
tantly, the NAD(H) regeneration rate is about two to five 
times than that of NADP(H) in aerobic conditions and as 
high as 20 in anaerobic conditions. It should be noted that 
these observations are in good agreement with the previous 
experimental study which also reported that NAD+ pools 
are always higher than that of NADP+ in several bacteria 
[14]. A simple reason for observing such high NAD(H)/
NADP(H) ratios, especially under anaerobic conditions, 
is the differences in pathway utilization and the flux flow 
through them. Typically, the carbon flux is channeled 
through the fermentative pathways in the absence of oxida-
tive phosphorylation, and thus the carbon available through 
the primary NADP(H) synthetic routes, pentose phosphate 
pathway (PPP), and tricarboxylic acid (TCA) cycle, will be 
very low under such conditions (Fig. 2). These observations 

highlight the importance of maintaining aerobic condi-
tions to achieve a high intracellular NADP(H) turnover, in 
general.

Apart from oxygenation, the use of carbon sources also 
impacted the overall NADP(H) turnover rates, especially 
in yeasts, S. cerevisiae and P. pastoris (Fig.  1a). Moreo-
ver, B. subtilis and S. cerevisiae showed remarkably low 
NADPH turnover when compared to E. coli and P. pastoris 
(Fig. 1a). In order to get a better insight into such diverse 
observations, we examined the flux distribution through 
central metabolic pathways and assessed how they con-
tribute to the differences in flux-sum. In general, six key 
enzymes, glycerol-3-phosphate dehydrogenase (G3PD), 
glucose-6-phosphate dehydrogenase (G6PDH), gluconate 
dehydrogenase (GND), glutamate dehydrogenase (GLUD), 
and isocitrate dehydrogenase (ICDH) are known to contrib-
ute for NADPH in bacteria. B. subtilis has a much lower 
NADPH flux-sum than E. coli possibly due to its low flux 
through the PPP enzymes, G6PDH and GND, and/or the 
different specificity of the G3PD and GLUD enzymes 
that are NAD+ specific in B. subtilis whereas they are 
NADP+ specific in E. coli (Fig. 2a). Notably, S. cerevisiae 
also has very poor NADPH basal flux-sum while grow-
ing on glucose (two-folds less than that of P. pastoris). A 
closer examination of internal flux distribution revealed 
that S. cerevisiae has remarkably low flux through the pen-
tose phosphate pathway when compared to P. pastoris (~25 
times lower) and channels most of the carbon flux into the 
fermentative pathways due to its unique respiro-fermenta-
tive metabolism [8]. However, both yeasts showed a very 
high NADPH flux-sum while growing on glycerol due to 
the use of the exact same metabolic route: NADP-depend-
ent glycerol dehydrogenase (GLYCD) enzyme in the first 
few initial steps, where the carbon flux is usually be very 
high (Fig.  2b). Similarly, E. coli also had slightly higher 
NADPH flux-sums while growing on glycerol as it also uti-
lizes the NADP-dependent glycerol-3-phosphate dehydro-
genase (G3PD) for the breakdown of glycerol. Collectively, 
these observations highlight glycerol as the ideal carbon 
source for achieving high NADP(H) regeneration due to 
the presence of several NADP-dependent enzymes, particu-
larly in the upstream, among its catabolic pathways.

Maximum NADP(H) turnover capacity and its 
tradeoffs with cellular growth

In the previous section, we computed the basal NADPH 
flux-sum of all microbes, which just provides the range of 
achievable cofactor turnover rates while the cell evolves 
toward maximal growth [9]. Since constraint-based flux 
analysis is an optimization problem, the flux-sum computed 
from such analysis will be a function of the biomass com-
ponents, and thus the NADPH balancing could be highly 

Fig. 1   Cofactor turnover rates (a) and growth rate (b) of the four 
microbial chassis under aerobic and anaerobic conditions. It should 
be noted that some organisms do not grow in certain conditions and 
thus the flux-sums cannot be computed. Following is the list of non-
growth conditions for each organism: B. subtilis—anaerobic, S. cere‑
visiae—glycerol (anaerobic), P. pastoris—glycerol (both aerobic and 
anaerobic)
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dependent on the corresponding biosynthetic pathways. 
Therefore, in order to evaluate the maximum theoretical 
flux-sum from the metabolic network without considering 
any cellular objective, we computed its flux-sum maxima 
[9]. In all the cases, the NADPH flux-sum maxima is much 
higher than the basal flux-sum (more than 5 times), indicat-
ing that these are “partially utilized” metabolites which are 
not turned over at their full capacity during maximum cell 
growth. This evaluation characterizes the metabolic net-
work flexibility toward NADPH synthesis, and thus, allows 
us to design more targeted approaches, such as gene dele-
tion/amplification, to improve the NADPH biosynthesis of 
a particular microbe which has substantially low levels than 
its maximum limit while growing in the cell culture.

Notably, E. coli has very high NADPH flux-sum max-
ima despite having comparable basal flux-sums with other 
organisms, suggesting that it probably has the most flex-
ible central metabolism for NADPH synthesis (Fig.  3a). 
Further examination of corresponding intracellular fluxes 
revealed that it used the membrane-bound transdehydroge-
nase (TDH) enzyme to produce the whole of NADPH. It 
should be noted that this TDH is unique to E. coli and is 
not present in any of the other three organisms examined. 
Moreover, this enzyme is reported to provide about 40 % 
of total NADPH in E. coli while growing in glucose batch 
cultures [43]. Collectively, such observations suggest that 
TDH has a critical role in overall NADPH regeneration 
ability in E. coli where the turnover rates can be further 
augmented by overexpressing the PPP enzymes, such as 
G6PDH and GND. Unlike E. coli, all other microbes had 
relatively lower flux-sum maxima and rely heavily on the 

oxidative PPP fluxes for their NADPH production. Here, 
it is interesting to note that B. subtilis has a comparable 
flux-sum maxima with that of S. cerevisiae and P. pasto‑
ris despite having substantially low basal flux-sum. Such 
observations highlight the fact that although B. subtilis has 
superior ability to regenerate NADP(H), probably it synthe-
sizes NADPH at sub-optimal ranges while growing expo-
nentially to maintain the overall redox balance and channel 
maximum possible carbon flux into the biomass synthetic 
pathways.

We also analyzed the effect of NADPH turnover on cel-
lular growth from the lowest value, i.e., zero, to the maxi-
mum value, i.e., maxima. Figure 3 shows the relationship 
between NADPH flux-sum and biomass production of all 
the four microbes under aerobic and anaerobic conditions. 
It could be observed that when NADPH synthesis is com-
pletely shut down from the network, the cells were unable 
to grow, indicating that it is an “essential metabolite” [17]. 

Fig. 3   a Basal and maximal NADPH flux-sums of the four microbes. 
It should be noted that since some organisms do not grow in certain 
conditions, we did not compute the flux-sum maxima for those condi-
tions and they do not appear. b Relationship between NADPH flux-
sum and growth rate under aerobic conditions while growing in glu-
cose. Basal and maximal flux-sums are indicated with closed circles 
and squares, respectively

Fig. 2   Flux distribution across the central metabolic enzymes in 
bacteria (a) and yeasts (b). The reactions in red boxes correspond 
to enzymes which has NADP(H) as cofactor in one or more organ-
isms and asterisks represent enzymes with very low, non-zero flux 
value. Enzyme abbreviations are as follows: ACK acetate kinase, 
ADHE alcohol dehydrogenase, ALDD aldehyde dehydrogenase, CS 
citrate synthase, ENO enolase, F6PA fructose-6-phosphate aldolase, 
FBA fructose-bisphosphate aldolase, FRD fumarate reductase, FUM 
fumarase, G3PD glycerol-3-phosphate dehydrogenase, G6PDH glu-
cose-6-phosphate dehydrogenase, GAPD glyceraldehyde-3-phosphate 
dehydrogenase, GLCpts glucose transport via PEP:Pyr PTS, GLUD 
glutamate dehydrogenase, GLYCD glycerol dehydrogenase, GLYK 
glycerol kinase, GND gluconate dehydrogenase, HEX hexokinase, 
ICDH isocitrate dehydrogenase, LDH lactate dehydrogenase, MDH 
malate dehydrogenase, PC pyruvate carboxylase, PDC pyruvate 
decarboxylase, PDH pyruvate dehydrogenase, PFK phosphofruc-
tokinase, PFL pyruvate-formate lyase, PGI glucose-6-phosphate 
isomerase, PGK phosphoglycerate kinase, PGL 6-phosphogluconol-
actonase, PGM phosphoglycerate mutase, PPC phosphoenolpyruvate 
carboxylase, PTA phosphotransacetylase, PYK pyruvate kinase, RPE 
ribulose-5-phosphate epimerase, RPI ribose-5-phosphate isomerase, 
SUCOAS succinyl-CoA synthase, TALA transaldolase, TDH trans-
dehydrogenase, TKT transketolase, TPI triose phosphate isomerase, 
XYLI xylose isomerase, XYLK xylulokinase, XYLR xylose reductase, 
XYLTD xylitol dehydrogenase

◂
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Moreover, when the flux-sum is intensified to full capacity 
from the basal value, our simulations again resulted in zero 
cell growth, demonstrating that it is a “competitive metab-
olite” as well [9]. This implies that any targeted chan-
neling of carbon flux toward NADPH synthetic pathways 
will deprive the cell from producing some of its essential 
metabolites, thus ceasing its growth. Therefore, it is neces-
sary to maintain the regeneration rate at a sub-optimal level 
which improves the product synthesis significantly but at 
the same time does not penalize cell growth severely.

Cofactor engineering enzyme targets to improve 
NADP(H) regeneration

We next applied the CMA to identify the optimal enzyme 
targets for CSE to improve NADPH regeneration as it has 
been earlier shown that cofactor engineering increases 
product yields without compensating biomass production 

[20]. Table 1 summarizes the CMA identified top two CSE 
targets for each of them (see Table S5 in the Supporting 
Information for more targets). It can be observed along 
with NADPH flux-sums, as expected, CSE also improved 
the biomass yield significantly in several cases.

Global CSE target: glyceraldehyde‑3‑phosphate 
dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase (GAPD) was 
identified as the best enzyme target for CSE to improve the 
overall NADP(H) in several cases, especially while grow-
ing in glucose and xylose. Swapping of GAPD’s cofactor 
almost reverses the NAD(H)/NADP(H) ratio in several 
cells (results not shown). Since GAPD is a central enzyme 
in glycolysis, it has an assured carbon flow through it while 
growing on glucose, glycerol, or xylose and contributes 
largely for high NAD(H) turnover rates in the wild-type 

Table 1   CMA identified CSE targets and the % increase of NADP(H) flux-sum and growth in the mutant strains with respect to the wild type

a  Enzyme abbreviations are same as Fig. 2
b  Apart from GAPD, CSE of none other enzymes improved NADPH turnover

Organism Substrate Aerobic Anaerobic

CSE Targeta NADPH flux-sum  
(% increase)

Growth rate  
(% increase)

CSE Target NADPH flux-sum (% 
increase)

Growth rate 
(% increase)

Basal Maxima Basal Maxima

E. coli Glucose GAPD 41.20 13.88 5.73 GAPD 263.80 36.36 9.58

PDH 5.51 11.11 5.51 PDH 8.19 27.27 6.97

Glycerol GAPD 172.26 13.33 0 GAPD 96.84 33.21 0

PGCD 54.84 0 0 GLYCD 6.82 0 0

Xylose GAPD 47.57 14.49 6.17 GAPD 309.02 40.81 9.58

PDH 7.44 11.59 6.16 PDH 8.19 30.61 6.97

B. subtilis Glucose GAPD 384.45 19.50 2.94 NA NA NA NA

PDH 249.57 5.36 2.94 NA NA NA NA

Glycerol PDH 573.09 22.83 0 NA NA NA NA

PGCD 504.53 0 0 NA NA NA NA

Xylose GAPD 405.98 20.25 2.94 NA NA NA NA

PDH 262.36 5.57 2.94 NA NA NA NA

S. cerevisiae Glucose GAPD 356.69 23.86 0.22 ADHE 557.25 0 8.11

MDH 266.65 8.15 0.22 GAPD 329.28 98.19 8.11

Glycerol GAPD 132.90 27.75 0 NA NA NA NA

MDH 42.06 6.58 0 NA NA NA NA

Xylose GAPD 6.31 23.88 9.04 GAPD 16.65 98.19 16.66

XYLTD 2.25 17.91 8.83 –b – – –

P. pastoris Glucose GAPD 71.03 4.71 5.11 GAPD 598.50 50 7.90

MDH 11.16 12.7 5.11 ADHE 568.57 0 7.90

Glycerol GAPD 69.74 9.37 0 GAPD 1180.15 56.13 0

PGCD 3.15 0 0 PGCD 561.73 0.02 0

Xylose NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA
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strains. Therefore, it is expected that the engineering of 
GAPD’s cofactor from NAD(H) to NADP(H), allows the 
cells to generate large amounts of NADP(H) instead of 
NAD(H) through glycolysis itself. Here, it should be noted 
that this strategy has already been practically shown to 
work effectively in E. coli by Martínez et al. who replaced 
the native GAPD with NADP-specific GAPD from 
Clostridium acetobutylicum [33]. The authors observed 
a high production rates of the NADP-dependent products 
without an increase through PPP pathway, suggesting that 
the NADP(H) required for product synthesis is indeed 
produced from glycolysis itself. Similarly, a S. cerevisiae 
strain was also constructed with NADP-dependent GAPD 
to improve the xylose fermentation [47]. Further, the same 
strain has been patented, reporting that it has significantly 
higher yield for several products, such as polyhydroxyal-
kanoates, amino acids, fats, vitamins, and nucleotides [31].

It should be emphasized that among all the four organ-
isms analyzed, B. subtilis natively has a NADP-dependent 
GAPD in addition to the NAD-specific GAPD. However, 
we did not observe any high NADP(H) turnover in wild-
type B. subtilis because only the NAD-dependent GAPD 
operates in the glycolytic direction whereas the NADP-
dependent GAPD acts on reverse direction as it is captured 
by the iYO844 model. Therefore, it is important to manip-
ulate the regulatory mechanisms which prevent NADP-
dependent GAPD from operating in glycolytic direction 
or to engineer the NAD-dependent GAPD to prefer NADP 
such that it can generate sufficient amounts of NADP(H) 
from glycolysis.

Organism‑specific and condition‑specific CSE targets

Our simulations also unraveled several organism-specific 
targets, in addition to the global target GAPD. For example, 
cofactor engineering of pyruvate dehydrogenase (PDH) also 
significantly improved the NADP(H) turnover than that of 
wild type in E. coli and B. subtilis. Similarly, S. cerevisiae 
and P. pastoris showed improvements in overall NADP(H) 
regeneration upon switching the cofactor of malate dehydro-
genase (MDH) and alcohol dehydrogenase (ADHE) where 
the former is suitable for aerobic and the later for anaerobic 
growth, respectively. Collectively, these observations indi-
cate that these identified enzyme targets could potentially 
carry high flux irrespective of the carbon source, and thus 
their cofactor swapping helps improving NADP(H) turnover 
rates across multiple environmental designs.

Enzyme engineering hotspots for cofactor dependence 
switch

Once the relevant enzyme targets are identified for cofactor 
engineering, there are two possible methods to switch the 

cofactor specificity. First method is to simply replace the 
native gene which is NAD(H)-specific with a gene that has 
opposite cofactor. The second technique is to mutate the 
enzyme by protein engineering techniques such that it pre-
fers the other cofactor than the original one. Among them, 
altering the cofactor specificity using enzyme engineering 
approaches is an effective way to circumvent metabolic 
bottlenecks by increasing the intracellular pool of NADH/
NADPH. Therefore, we attempt to suggest possible muta-
tion regions in the amino acid sequence for the CSE targets 
identified. To do so, first, we identified the determinants 
for cofactor affinity in these enzymes, and then performed 
sequence alignments and structural analysis to locate the 
key loop regions that are crucial for the discrimination 
between NADH and NADPH. Although the loop regions 
can be easily identified with multiple sequence alignment 
within the same enzyme class, they share low sequence 
identities among different enzyme classes. Therefore, 
structural information was included, in combination with 
sequence similarity based method, to identify the key resi-
dues in the loop region that determines cofactor specificity.

Four enzymes from those identified in Table  1 have 
available structural information, and the loop region that 
interacts with the 2′-OH side of NADH can be readily 
identified in these structures (Fig. 4a). For the rest without 
structural data, homology models were built to gain more 
insights into the cofactor-binding site (Fig.  4b). Appar-
ently, all the enzymes adopt a Rossmann-type fold [41] in 
their NADH-binding sites, and a highly conserved aspar-
tate or glutamate residue is found to form a hydrogen bond 
with the 2′-OH of the cofactor, except for E. coli ADHE, 
in which no direct hydrogen bond is spotted. Studies have 
shown that mutating this residue to smaller residues with 
a hydroxyl group, such as serine, can compensate for the 
size change in the binding pocket and the negative charge 
introduced by the 2′-phosphate group in NADPH, thereby 
switching the cofactor specificity toward NADPH [4]. 
Therefore, the conserved glutamate or aspartate in the 
loop region should be targeted for mutagenesis study, and 
a replacement by serine may potentially change the cofac-
tor dependence. However, it should be noted that other 
residues in the loop can also be critical for the binding 
and orientation of the cofactor to achieve optimal catalytic 
activity, which, therefore, should also be considered for site 
saturation mutagenesis to tune the binding affinity toward 
NADPH.

Discussion

NADP(H) is an essential redox cofactor, very similar to 
NAD(H), and is specifically required in high quantities 
for the synthesis of various plant-based natural products 
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and chiral pharmaceuticals. Although various strate-
gies have been proposed to improve cofactor regenera-
tion, still the overall redox balancing in commonly used 
industrial microbes and the effects of using different 
carbon sources to manipulate cofactor turnover rates 
have not been assessed thoroughly. Therefore, using the 
CBM technique, in this study, we addressed this issue 
by first examining the overall NADP(H) and NAD(H) 
turnover rates in four of the commonly used industrial 
microbes, E. coli, S. cerevisiae, B. subtilis, and P. pas‑
toris. Among them, E. coli, with its unique PntAB gene, 
showed remarkably high ability to produce NADPH. All 
other organisms, in contrast, relied heavily on oxidative 
PPP fluxes for NADPH biosynthesis, since they lack the 
PntAB gene. S. cerevisiae showed a very high NAD(H)/
NADP(H) ratio (6.6 in aerobic and 26.6 in anaerobic) 
while growing on glucose due to negligible fluxes via 
oxidative PPP. Similarly, a very low NADPH biosynthe-
sis was observed in B. subtilis across all carbon sources 
due to the lack of sufficient NADP-dependent enzymes in 
the central metabolism. Interestingly, glycerol identified 
as the best carbon source for achieving a high NADPH 

regeneration as the initial step of glycerol breakdown 
in E. coli, P. pastoris, and S. cerevisiae had a NADP-
dependent enzyme and thus did not rely much on oxida-
tive PPP for NADPH synthesis. Here, it should be noted 
that such observations are in very good agreement with 
the previous studies which showed that glycerol would 
be a better carbon source than glucose and xylose while 
producing terpenoids from E. coli and S. cerevisiae [16]. 
Furthermore, our simulations also indicated that aero-
bicity also has a greater NADP(H) production as the 
NADP(H)/NAD(H) ratios were much lower in anaero-
bic conditions due to the excessive fluxes via NAD(H)-
dependent fermentative pathways.

In this study, we also identified several enzyme targets 
whose cofactor switching from NAD(H) to NADP(H) 
or vice versa can increase the NADP(H) turnover signifi-
cantly. Interestingly, cofactor engineering increased the 
NADP(H) basal flux-sums by up to 20-folds (Table 1). In 
order to better understand these observations, we com-
puted the NADP(H) flux-sum maxima of the mutants 
and observed a significant increase in them as well. Such 
increase in NADP(H) flux-sum maxima along with the 

Fig. 4   Close-up views of the NADH-binding sites in enzymes with 
available crystal structures (a) and protein homology models (b). The 
cofactor binding site in homology models are speculated from the 
geometry and orientation of NADH in structural templates or their 
close homologs. The proteins are shown in cartoon representation 

with the loop region colored in slate, while the cofactors are shown in 
stick representation with the following color scheme: red for oxygen, 
blue for nitrogen, green for carbon, orange for phosphorus. Hydrogen 
bonds are shown in dotted lines
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increase in biomass yield indicates that the overall solu-
tion space is expanded in the cofactor modified strains. It 
should be noted that such characteristics of the metabolic 
solution space emerging from cofactor engineering provide 
significant advantages than other metabolic engineering 
strategies, such as gene knockout (KO) or overexpression. 
As shown in Fig.  5, gene KO or amplification forcefully 
redirects the carbon flux to NADPH biosynthetic pathways 
to improve the NADPH basal flux-sum toward its maxima. 
However, it also should be noted that such improvement 
in cofactor levels can be obtained only at the expense of 
biomass as we have earlier identified that NADP(H) is a 
partially utilized, competitive metabolite from flux-sum 
analysis. Cofactor engineering, on the other hand, expands 
the flux solution space with a much higher flux-sum value 
where the basal NADPH flux-sum of CSE mutants is very 
closer to the wild-type maxima.

Among several targets identified for CSE, GAPD was 
the topmost candidate across all organisms and envi-
ronmental conditions analyzed. It should be noted these 
results fully support the previous findings of King and 
Fiest [19], where the authors have showed that the cofac-
tor swapping of this enzyme increased the theoretical 
yields of several products in E. coli and S. cerevisiae sub-
stantially. Since GAPD is a central enzyme in glycoly-
sis, most of the carbon sources need to be broken down 
via this enzyme to reach the pyruvate node from which it 
is distributed to various other pathways involved in bio-
mass and byproduct synthesis. Cofactor engineering of 
GAPD almost reverses the NAD(H)/NADP(H) ratios in 

most strains [20]. Therefore, establishing stable strains 
of GAPD-cofactor-modified microbes is necessary for 
exploiting them later to produce NADP(H)-dependent 
products. In this regard, as mentioned earlier, strains 
bearing NADP(H)-GAPD has been constructed for E. 
coli [33] and S. cerevisiae [46], and have already shown 
a substantial improvement in the NADP(H)-dependent 
product yields.

As mentioned earlier, altering the cofactor specificity 
via enzyme engineering is one of the promising tech-
niques as availability of protein sequences and structures 
allows the identification of key determinants of NAD(P)
H binding. A Rossmann fold is commonly found in oxi-
doreductase protein structures and a conserved βαβαβ 
structural motif is generally identified as the key for the 
recognition of these nucleotide-containing cofactors, 
which interact with surrounding residues via sophisti-
cated non-covalent interactions [41]. The binding sites 
that distinguish NADH and NADPH are mainly located 
in a loop region near the 2′ position of the cofactor ribose 
ring (2′-phosphate in NADPH and 2′-OH in NADH) 
[27]. Recently, Brinkmann-Chen et  al. identified a sub-
set of residues in a loop region of the Rossmann fold in 
the ketol-acid reductoisomerase (KARI) family, and pro-
posed a general guide for reversing the cofactor prefer-
ence from NADPH to NADH, which was demonstrated 
by their successful engineering of three different KARIs 
[4]. However, this rule may not be generally applicable 
since the natural sequences in the cofactor binding motifs 
among different enzyme classes could be hypervari-
able, which prevents the rational engineering of cofactor 
dependence. To address this, we combined sequential and 
structural data and identified potential hotspot residues 
in the loop regions of the target enzymes that determine 
the cofactor specificity (Table 2). Mutating these residues 
may potentially switch the cofactor dependence from 
NADH to NADPH in a more rational way than using 
directed evolution approaches. However, enzyme activ-
ity can possibly be impaired even if the cofactor pref-
erence is altered. In this case, random mutations need 
be introduced followed by screening or selection for 
wild-type-like catalysis efficiency with desired cofactor 
dependence.

Here, we generally assessed the cofactor regeneration 
rates in wild-type strains which do not produce any non-
native products requiring large amounts of NADP(H) for 
their biosynthesis. However, it is very much possible that 
the results presented herein for each organism can change 
significantly depending on the product being produced 
and corresponding NADP(H) requirements. Therefore, in 
order to examine the validity of current results, we per-
formed constraint-based flux simulations of cells which 
produce two different NADP(H)-dependent products: 

Fig. 5   Comparison of cofactor engineering and gene deletion/over-
expression for NADPH improvement. In the deletion/overexpression 
mutants, the NADPH flux-sum increase along the shaded region. 
Note that these mutants will have growth rate lesser than that of 
wild type as NADPH is a competitive metabolite. On the other hand, 
cofactor engineering increases both NADPH synthesis and growth 
rate due to an overall expansion of flux space
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shikimate, a chiral pharmaceutical intermediate which 
requires one mole of NADPH per mole for its biosynthe-
sis, and lycopene, a natural plant-based food supplement 
which requires 4 mol of NADPH. The product exchange 
reaction was maximized during these simulations while 
simultaneously containing the biomass at 10  % of the 
wild-type’s growth rate. Overall, the results of these 
additional simulations completely confirmed our earlier 
findings (1) glycerol as best carbon source, (2) E. coli as 
better expression host, (3) Aerobiosis offer better product 
synthesis than anaerobic conditions, and (4) GAPD CSE 
mutants potentially have better product yields than wild 
type (see Table S6 and S7 in the Supporting Information).

Even though the current study has provided various 
insights regarding the NADPH balancing in various micro-
bial metabolic networks, several limitations still exist. The 
current analysis has been performed in a theoretical man-
ner using the stoichiometry accounted in the GEMs. Sev-
eral model parameters, such as the accuracy of biomass 
equations, constraints applied during simulations, reac-
tion directionalities, and the cofactor specificity of several 
enzymes accounted in the model will significantly influ-
ence the internal flux distributions, and thus the cofactor 
turnover rates. For example, our flux analysis indicated a 
low oxidative PPP flux in B. subtilis than E. coli whereas 
earlier experimental reports suggest otherwise [49]. On the 
other hand, another experimental study showed high inter-
cellular NADP+ concentrations in E. coli than B. subtilis, 
despite a low pool of NADPH [14]. Therefore, in order to 
clarify such ambiguities, the presented method can be fur-
ther improved by incorporating additional constraints from 

C13 analysis which is not included here due to the differ-
ences in base cases and unavailability of data in certain 
organisms. Nevertheless, despite these limitations, the pre-
sent work represents the first comprehensive analysis on 
NADPH balancing in commonly used industrial microbes 
and demonstrates the advantage of CSE over other meta-
bolic engineering strategies for strain improvement.
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